Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with Brassica.

Identifieur interne : 000365 ( Main/Exploration ); précédent : 000364; suivant : 000366

Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with Brassica.

Auteurs : Karen P. Zanewich [Canada] ; Stewart B. Rood [Canada]

Source :

RBID : pubmed:31979041

Abstract

Heterosis, or hybrid vigor, has contributed substantially to genetic improvements in crops and trees and its physiological basis involves multiple processes. Four associations with the phytohormone gibberellin (GA) indicate its involvement in the regulation of heterosis for shoot growth in maize, sorghum, wheat, rice, tomato and poplar. (1) Inbreds somewhat resemble GA-deficient dwarfs and are often highly responsive to exogenous GA3. (2) Levels of endogenous GAs, including the bioeffector GA1, its precursors GA19 and GA20, and/or its metabolite GA8, are higher in some fast-growing hybrids than parental genotypes. (3) Oxidative metabolism of applied [3H]GAs is more rapid in vigorous hybrids than inbreds, and (4) heterotic hybrids have displayed increased expression of GA biosynthetic genes including GA20-oxidase and GA3-oxidase. We further investigated Brassicarapa, an oilseed rape, by comparing two inbreds (AO533 and AO539) and their F1 hybrid. Seedling emergence was faster in the hybrid and potence ratios indicated dominance for increased leaf number, area and mass, and stem mass. Overdominance (heterosis) was displayed for root mass, leading to slight heterosis for total plant mass. Stem contents of GA19,20,1 were similar across the Brassica genotypes and increased prior to bolting; elongation was correlated with endogenous GA but heterosis for shoot growth was modest. The collective studies support a physiological role for GAs in the regulation of heterosis for shoot growth in crops and trees, and the Brassica study encourages further investigation of heterosis for root growth.

DOI: 10.3390/plants9020139
PubMed: 31979041
PubMed Central: PMC7076659


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with
<i>Brassica</i>
.</title>
<author>
<name sortKey="Zanewich, Karen P" sort="Zanewich, Karen P" uniqKey="Zanewich K" first="Karen P" last="Zanewich">Karen P. Zanewich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31979041</idno>
<idno type="pmid">31979041</idno>
<idno type="doi">10.3390/plants9020139</idno>
<idno type="pmc">PMC7076659</idno>
<idno type="wicri:Area/Main/Corpus">000499</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000499</idno>
<idno type="wicri:Area/Main/Curation">000499</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000499</idno>
<idno type="wicri:Area/Main/Exploration">000499</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with
<i>Brassica</i>
.</title>
<author>
<name sortKey="Zanewich, Karen P" sort="Zanewich, Karen P" uniqKey="Zanewich K" first="Karen P" last="Zanewich">Karen P. Zanewich</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4</wicri:regionArea>
<wicri:noRegion>T1K 3M4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plants (Basel, Switzerland)</title>
<idno type="ISSN">2223-7747</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heterosis, or hybrid vigor, has contributed substantially to genetic improvements in crops and trees and its physiological basis involves multiple processes. Four associations with the phytohormone gibberellin (GA) indicate its involvement in the regulation of heterosis for shoot growth in maize, sorghum, wheat, rice, tomato and poplar. (1) Inbreds somewhat resemble GA-deficient dwarfs and are often highly responsive to exogenous GA
<sub>3</sub>
. (2) Levels of endogenous GAs, including the bioeffector GA
<sub>1</sub>
, its precursors GA
<sub>19</sub>
and GA
<sub>20</sub>
, and/or its metabolite GA
<sub>8</sub>
, are higher in some fast-growing hybrids than parental genotypes. (3) Oxidative metabolism of applied [
<sup>3</sup>
H]GAs is more rapid in vigorous hybrids than inbreds, and (4) heterotic hybrids have displayed increased expression of GA biosynthetic genes including
<i>GA</i>
<i>20</i>
<i>-</i>
<i>oxidase</i>
and
<i>GA</i>
<i>3</i>
<i>-</i>
<i>oxidase</i>
. We further investigated
<i>Brassica</i>
<i>rapa</i>
, an oilseed rape, by comparing two inbreds (AO533 and AO539) and their F
<sub>1</sub>
hybrid. Seedling emergence was faster in the hybrid and potence ratios indicated dominance for increased leaf number, area and mass, and stem mass. Overdominance (heterosis) was displayed for root mass, leading to slight heterosis for total plant mass. Stem contents of GA
<sub>19</sub>
<sub>,20,1</sub>
were similar across the
<i>Brassica</i>
genotypes and increased prior to bolting; elongation was correlated with endogenous GA but heterosis for shoot growth was modest. The collective studies support a physiological role for GAs in the regulation of heterosis for shoot growth in crops and trees, and the
<i>Brassica</i>
study encourages further investigation of heterosis for root growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31979041</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2223-7747</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Plants (Basel, Switzerland)</Title>
<ISOAbbreviation>Plants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with
<i>Brassica</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E139</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/plants9020139</ELocationID>
<Abstract>
<AbstractText>Heterosis, or hybrid vigor, has contributed substantially to genetic improvements in crops and trees and its physiological basis involves multiple processes. Four associations with the phytohormone gibberellin (GA) indicate its involvement in the regulation of heterosis for shoot growth in maize, sorghum, wheat, rice, tomato and poplar. (1) Inbreds somewhat resemble GA-deficient dwarfs and are often highly responsive to exogenous GA
<sub>3</sub>
. (2) Levels of endogenous GAs, including the bioeffector GA
<sub>1</sub>
, its precursors GA
<sub>19</sub>
and GA
<sub>20</sub>
, and/or its metabolite GA
<sub>8</sub>
, are higher in some fast-growing hybrids than parental genotypes. (3) Oxidative metabolism of applied [
<sup>3</sup>
H]GAs is more rapid in vigorous hybrids than inbreds, and (4) heterotic hybrids have displayed increased expression of GA biosynthetic genes including
<i>GA</i>
<i>20</i>
<i>-</i>
<i>oxidase</i>
and
<i>GA</i>
<i>3</i>
<i>-</i>
<i>oxidase</i>
. We further investigated
<i>Brassica</i>
<i>rapa</i>
, an oilseed rape, by comparing two inbreds (AO533 and AO539) and their F
<sub>1</sub>
hybrid. Seedling emergence was faster in the hybrid and potence ratios indicated dominance for increased leaf number, area and mass, and stem mass. Overdominance (heterosis) was displayed for root mass, leading to slight heterosis for total plant mass. Stem contents of GA
<sub>19</sub>
<sub>,20,1</sub>
were similar across the
<i>Brassica</i>
genotypes and increased prior to bolting; elongation was correlated with endogenous GA but heterosis for shoot growth was modest. The collective studies support a physiological role for GAs in the regulation of heterosis for shoot growth in crops and trees, and the
<i>Brassica</i>
study encourages further investigation of heterosis for root growth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zanewich</LastName>
<ForeName>Karen P</ForeName>
<Initials>KP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rood</LastName>
<ForeName>Stewart B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta‎, T1K 3M4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Water Innovation Program</GrantID>
<Agency>Alberta Innovates</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Discovery Grant</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Plants (Basel)</MedlineTA>
<NlmUniqueID>101596181</NlmUniqueID>
<ISSNLinking>2223-7747</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">canola</Keyword>
<Keyword MajorTopicYN="N">hybrid vigor</Keyword>
<Keyword MajorTopicYN="N">maize</Keyword>
<Keyword MajorTopicYN="N">phytohormones</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">root growth</Keyword>
<Keyword MajorTopicYN="N">sorghum</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflicts of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31979041</ArticleId>
<ArticleId IdType="pii">plants9020139</ArticleId>
<ArticleId IdType="doi">10.3390/plants9020139</ArticleId>
<ArticleId IdType="pmc">PMC7076659</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Theor Appl Genet. 1995 Jul;91(1):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24169676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2236-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6397-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):615-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Jul;14(7):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23752794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Feb;24(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 Sep-Oct;96(5):614-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 1990 Aug;79(4):629-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22904164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Jan;63(1):21-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2015;34(4):740-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26523085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Mar;71(3):639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Nov;88(4):597-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27460790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):1905-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Feb;112(3):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16362278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:71-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23394499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):265-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25073707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Aug;115(3):351-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Feb;41(2):374-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29143349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 20;8:1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28676808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 10;8:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18402703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Sep 2;241(4870):1216-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17740785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breed Sci. 2018 Mar;68(2):145-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29875598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1964 Feb;51(2):212-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16591144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2007 Jun 29;8:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17598921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Feb;23(2):60-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17188398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3555-E3562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8101-8106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28696287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Mar;71(3):645-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Zanewich, Karen P" sort="Zanewich, Karen P" uniqKey="Zanewich K" first="Karen P" last="Zanewich">Karen P. Zanewich</name>
</noRegion>
<name sortKey="Rood, Stewart B" sort="Rood, Stewart B" uniqKey="Rood S" first="Stewart B" last="Rood">Stewart B. Rood</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31979041
   |texte=   Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with Brassica.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31979041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020